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NOMENCLATURE

0

Symbols Definition Units

* c sound speed cm/s

Cv  specific heat at constant volume erg/g/K

D detonation velocity mm/usec

e specific internal energy erg/g

E total internal energy erg

E* activation energy erg/mole

h Lagrangian spatial coordinate cm

HOET heat of detonation erg/g

G shear modulus dynes/cm2

M mass g

P pressure dynes/cm2

maximum input pressure dynes/cm2

q artificial viscosity dynes/cm2

Q chemical energy release rate erg/g/s

R retonation velocity mm/usec

R universal gas constant erg/mole/K -_

R product gas constant erg/g/K

t time s

t* characteristic rise time usec

T temperature K

TH  hot spot temperature K

T" characteristic burn temperature K
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activation temperature K

u particle velocity cm/s

v specific volume cm3/g

V volume cm3

W unreacted mass fraction 0

WB WB= 1 -WH

WH hot spot mass fraction

x Eulerian spatial coordinate cm

V yield strength dynes/cm2

z frequency factor 1/s

run-up distance to detonation cm

Greek

* VT/VS =1/(-

3
covolume correction term cm /g

0 porosity, Vg/VT

Ur Gruneisen coefficient

PCisothermal compressibility cm /dynes
of the material at standard
conditions

Kp coefficient of thermal expansion 1/K

p density g/cm3

hot spot decomposition time Usec

Helmholtz free energy erg/g

- ... . .- - -. - - , . . -, .- - .. .. . -.• . -.-. , , , - .,.. .- : ,
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Subscripts

bc boundary condition

CJ Chapman-Jouguet state

g gas

I isentrope

0 initial state

s solid

T total or mechanical mixture



vii

ABSTRACT

Increasing the nitramine content of solid rocket propellants increases
the overall performance of the system as well as the sensitivity to detonation
by shock initiation. In some instances a confined zone of granulated propel-
lant adjacent to a zone of cast propellant can provide a rapid enough pres-
sure-rise rate to shock initiate the cast material. If the cast propellant
is porous, the detonation will initiate at some location ahead of the granu-
lated bed/cast material interface. The work presented here is an effort
to numerically model this Deflagration to Shock to Detonation Transition
(DSDT) event. Results are presented showing the detonation build up for .

propellants/explosives with various initial void content and ramp wave com-
pression loads.
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CHAPTER I

REVIEW AND OVERVIEW

Improving the specific impulse of a solid rocket motor continues to be an

engineering endeavor. The specific impulse of a system is defined to be the 0

ratio of thrust to fuel mass flow rate and is a technical description of the

overall performance of a system. Recently, one of the most advantageous ways

of increasing the specific impulse has been to use secondary high explosives S

as constituents in the propellant mixture. However, when high-energy

nitramines such as HMX (octogen) are utilized in the propellant formulation

the hazard of a Deflagration to Shock to Detonation (DSDT) becomes a relevant 6

new concern.

A DSDT event is defined as a controlled subsonic deflagration wave making

a transition to a high order steady detonation wave. Most researchers agree

that in order for DSDT to occur the rocket motor grain must first be . -

damaged. Granulation of the propellant bed can be a result of a handling . .-

accident or case and/or nozzle failure during operation. Moreover, once a S

region of granulated material has been ignited in a confined configuration the

high surface to volume ratio particles provide an increased gas generation and

a rapid pressurization rate which can shock initiate the detonative 0

reaction. Therefore the occurrence of a DSDT event can result in total

destruction of the solid propellant rocket motor assembly in the order of only

milliseconds after the onset of granulation. .

Since the employment of high secondary explosives in the propellant

formulation is now taking place (to increase the specific impulse), there is a

need to understand the criteria for a DSDT event to occur so the hazard can be 0

..........................................



eliminated or at least avoided. In recent years there has been an increasing
iamount of research in this particular area of hazards. At the University of

Illinois, under the direction of Professor Herman Krier, an effort has been

made for over a decade to investigate the occurrence of a Deflagration to

*i Shock to Detonation Transition in cyclotetramethylene tetranitramine (HMX,

octogen). Examples of previous studies are given in references [1-4]. The

research in this study is an attempt to delineate a DSOT event from the onset

of compression waves propagating into the propellant bed to an eventual steady

detonation.

1.1 Related Published Work

As mentioned, here at the University of Illinois, Krier and co-workers

have extensively examined the possibility of DSDT occurring as a result of

*convective flame propagation through granular propellants [1-4]. The

propagation sequence of events can be summarized as follows. First, pressure

gradients develop in the granular bed from the localized burning of propellant - -

fragments. To cnnserve momentum, the hot product gases are driven through the .

cracks between the propellant fragments. Convective heat transfer from the

product gases to the surface of particles ignites more fragments, which in

turn increase the pressure gradients. As more and more fragments are ignited

the pressure gradients increase in magnitude eventually leading to shock

initiation of the detonation of the unreacted propellant. This process of

events is referred to by some as the accelerated convective burn model,

developed by Butler, Lembeck and Krier [4]. In brief, the rapid pressure

rise, fueled by particle ignition from convective heat transfer, appears to be ' -

the primary action that leads to detonation.

Siii:



3

On the other hand, Campbell's investigation [5] suggested that convective

0flame spreading was essential only in the early stages of DSDT. He suggested

that the stress waves produced by the burning fragments propagate ahead of the

" flame front and subsequently cause detonation. As the pressure gradients

i increase, stronger compression waves propagate and coalesce with earlier waves

to form and continually strengthen the shock prior to detonation. Campbell

went on to hypothesize that once a critical pressure was reached the pores

would collapse between the fragments and cause a solid plug to form. The plug

would continue to grow until the shock wave was strong enough to initiate

detonation and in some instances retonation.

To validate his theory experimentally, Campbell packed a thick walled

steel pipe with granulated HMX and inserted one or more neoprene diaphragms at

various locations throughout the interior of the column. The neoprene disks

[r completely covered the cross-sectional area of the pipe, preventing

penetration of the hot product gases beyond the location of the disk. For

various degrees of fineness of granulated HMX, the experiments showed

detonation does occur ahead of the disk and in advance uf the convective flame

front. Figure 1.1 delineates the procession of the stress wave as time

increases, brought forth by the burning propellant fragments, in times tI

through t5. At time t5 , the stress wave has advanced ahead of the first

disk. Subsequently, the figure portrays at times t6 and t7, the detonation

* . wave traveling through the granulated bed. Furthermore, for the same

effective diameters, experimental runs were made, absent of the neoprene

disks, with coinciding run-up to detonation distances. In summary, Figure 1.2

depicts the measured run-up length to detonation for HMX granulated beds, with

and without interval barriers.

. * * -. .*

... ~~~.. ... '(*4i.. . .. . .. . .. . .. .
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6

Unlike Campbell [5], Macek [6] and Tarver [7] et al. studied DSDT in

homogeneous solid explosives. Macek ran a series of experiments in which 0

. heavily confined cast cylinders of dicthynitramine dinitrate (DINA) and 50/50

pentolite were thermally ignited by an electrical source. The pressure rises

I observed in the experiments by Macek were approximated by an exponential, 0

P=0.08 exp(O.1 t), where pressure, P, and time, t, had units of gigapascals

and microseconds, respectively. Moreover, Macek used a simplified model to

serve as a prototype of explosive burning under confinement. The model

employed a linear burn rate at the plane of deflagration, which is normal to

the direction of the propagation of the flame, that separates the product

gases from the unreacted explosive. Accordingly, the method of .0

characteristics was utilized to obtain theoretical verification for the

experimentally observed run-up distance to detonation. The point of

* coalescence of the right-running characteristics, as shown in Figure 1.3 was -

conjectured to be the point of formation of the shock which consequently

initiates detonation.

U However, Jacobs [8] found that Macek [6] had neglected to include the 0R

compressibility of the material, and with this correction in the model, his

recent calculations infer that conductive burning could not have produced a

shock wave. Both Jacobs [8] and Tarver [71 concluded that a mechanical means -0

of increasing the burning surface must exist to obtain exponential burning

i rates that exceed the expected normal rates by several orders of magnitude.

Hence, Anderson and Kooker [9] postulated that deconsolidation of a slightly .

porous material could occur through confined burning by shear-induced

stresses, thus creating a greater surface to volume ratio.

N.* *.* *:i -.: *- *
. . . . ... .

-
.,.
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Recently Coyne, Butler and Krier [10] studied the propagation of stress

waves into porous HMX. During their investigation they found it difficult to O

employ the method of characteristics while utilizing a version of the more

realistic Mie-Grunsien equation of state. Instead they used the Tait equation

of state, which does not properly represent the isentrope, to obtain a

numerical solution of the conservation equations by a Lagrangian finite

differencing technique. This solution was to be verified by comparing results

to those obtained by the method of characteristics. Depicted in Figure 1.4 •

are the results of the comparison. Eventually the modified Mie-Gruneisen

relation was incorporated in the finite difference code to model stress wave

propagation in a porous nonreactive material. .

The "Pop-plot" is named after its originator, Nickalous Popaloto, and

delineates the shock pressure strength to run-up distance to detonation on a

log-log scale. Figure 1.5 is an example of a "Pop-plot" which was obtained by

Dick 11 for porous HMX. Due to the hazards associated when experimenting

with explosives and the difficulties in obtaining accurate results, there is

little data on run-up distances to detonation for granular explosives.

However, using a data acquisition technique different from the standardized

wedge test, J. J. Dick obtained "Pop-plot" data for porous samples of HMX of

initial density po= 1.24 + 0.04 g/cm 3 11l. The wedge test records the .

trajectory of a shock as the wave travels through a wedged shaped sample by

photographic techniques. Different from the standardized test, Dick measured

only the total time that the wave resided in the cylindrical sample, thereby 0

producing a "Pop-.plot" through extensive runs and statistical analysis.

Setchell [12] also ran experiments on initiation behavior of granular

explosives. Utilizing Laser Velocity Interferometry, Setchell studied "ramp"

,-S ',%
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Comparison of Stress Wave Propagation
using the Tait E.O.S.

Finite Difference Calculation
Method of Characteristics

R P[xO(t),t]=[0.008 GPa] exp[(O.1±/s)t]
E 3
S
S
U 60 70 80 90/.sec
R
E2.

G
P -

* A
50

400

0.
0 10 20

5 15

XLOC (CM I
Figure 1.4 Stress wave propagation through solid HMX, from both the

finite difference calculation and the method of
characteristics. Both utilizing the modified Tait
equation of state. Figure taken from Reference [10].
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E
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*0.1 0.5 1.0 5.0 10
Input Stress (GPo)

Figure 1.5 Run-up distance to detonation versus input stress
for several high-explosives. Uncertainty bars for
run-up distance represent one and two standard

r deviations. Data for HMX (1.24 glcc) is from
Reference [11]. Data for PETN, PBX-9404, HMX (1.89 g/cc)
is from Reference [31].
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"ramp" waves having a finite rise-time of either 0.3 or 0.8 microseconds. By

shock loading proyoceram, a material known to have stress-strain relation with

negative curvature, he was able to disperse a shock wave into a wave having a

finite rise time. Setchell found, by comparing velocity-time profiles of

tests on PBX-9404 shocked to the same peak pressure, that very little

chemical energy was released in the tests with ramp waves prior to shock

formation. His records indicate that local hotspot generation and ignition

are strongly inhibited by finite rates of compression.

1.2 Hot Spot Theory

Although the theory of hot spots as a source for ignition in porous

material is widely accepted, there is very little conclusive evidence on the

* matter of generation. Some of the hypotheses for hot spot generation are

shear banding, jetting, shock focusing, and/or adiabatic compression. For

more detailed information, see to References [13-16]. Hayes [17] suggests

that the total energy deposited by the shock wave can be equated on a mass

fraction basis to the sum of the reversible work done in isentropically

. compressing the bulk of the material plus the irreversible heating of

localized hot spots, i.e.,

P + P
!0

2 (vTO-vT) = WH e(vTTH) + (1-WH) eI(P) (1.1)

In equation (1.1) the left-hand side represents the total energy deposited in

the material by the shock of strength, P. The term eI(P) represents the

. energy required to isentropically compress the bulk of the material to the

final shock pressure, and the remaining energy term, e(vT,TH), is the energy............ .

. . . .. . . . . . . . . . . . . . . . .
-€ . 5. . . . . . . . . . . . . . . .

__________________________________
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available to irreversibly heat the hot spots. The Hayes model assumes the

mass fraction of the hot spots, WH, to be equal to the preshock specific .

volume fraction of pores

WH = vTO/vSO - 1 (1.2) 0

Here, the subscript 'TO' represents the initial porous state, and the

subscript 'SO' refers to the homogenous initial state. Furthermore, Hayes S

[17] states that scissing of particular chemical bonds, stemming from the high

frequency content in the shock front and the construction of a non-equilbrium

temperature, can be responsible for the increase in reactivity and S

subsequently the decrease in decomposition times for the hot spots observed in

his experiments. Figure 1.6 compares the observed decomposition times for .

hexanitrostilbene (HNS) to times derived from low-temperature Arrhenius

kinetics for a hot spot temperature regime. Consequently, the explosion model

fails to predict corresponding decomposition times and falls away by a bigger 2.

margin as temperature of the hot spots decrease. 0

1.3 Scope of Our Study

As previously mentioned, only if there is fragmentation of the propellant S

bed in the burning region, along with proper confinement, will there be .

sufficient pressurization rates to shock initiate detonation for cast

explosives [181. Consider a rocket motor with a center burning grain 0

configuration as shown in Figure 1.7. To illustrate a DSOT event, a crack in

the propellant grain is assumed, and within the crack a packed bed of

fragments of known surface-to-volume ratio exist. The fragment filled crack 0

............... ....... o....%.

S..... . . ....................... .... ..........
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I. Temperature
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UFigure 1.6 Experimentally observed and calculated hot spot
decomposition times versus the hot spot temperature
inverse for HNS. Figure taken from Reference [17].
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DSDT HAZARD IN ROCKET MOTOR
Figure 1.7 Sketch of solid propellant rocket
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is enlarged and shown in Figure 1.8. At some arbitrary time, the bed ignites

and starts burning at x=O (left-end of figure). Increased product gas 0

generation beyond the level necessary for steady state motor operation

* orginates from the assumed high surface-to-volume ratio of confined sub-
I..-

millimeter size particles. In other words, the amount of gas being generated 9

by the decomposing propellant far exceeds the amount exiting the nozzle.

If the length of the packed bed is longer than the critical condition for

accelerated convective combustion to occur, subsequent detonation is S

inevitable [19]. However, if the bed length is less than the critical length,

pressure gradients produced by the granulated propellant can provide the

impetus to shock initiate detonation in the adjacent region of cast explosive,

depicted as zone I in Figure 1.9. Only stress waves can be transmitted across

the zone2/zonel interface. Even though the solid may contain pores, it is

_ assumed to be impermeable to the flow of hot gases. A schematic S .

• representation of the sequence of events leading to Deflagration to Shock to

Detonation Transition modeled in this study is shown in Figure 1.10. A value

i of 0 equal to unity represents a zone of all gas, while equal to zero

indicates a homogeneous solid. In Figure 1.10, the heavy black dots are

representative of microvoids in the cast material. Illustrated in Part B is

the collapse of the pores, a result of the stress load transmitted across the 0

granulated bed/cast explosive interface. Parts C and D show the length of the

pore collapse zone to increase with time as the lead compression waves travel

farther into the explosive. The finite compression waves coalesce into a S

shock front which then initiates the cast explosive downstream of the

interface. From this location a detonation wave propagates through the

* porous material, while a retonation wave propagates back through the 0

* compressed material (Part E).

~~~~~~~~~~~.•.. ....... .'..........°°.. ..... .,i .,. . ,,..°. .oo...•'
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(A ) g nlitio n 0

10 Convective

(B) Flame 60

SpreadingZon
0.0

ZLeading Compression Wove

Pore
(C) Collapse

0.
Pore Collapse

PlugFl 1
(D) Formation

S 0.

Shock S
(E) Formation Plu1,g

Shock

,Burning Zones\
Shock

(F) Inlitiation
(Detonation)

____ ____ ____ ____ ____ ___ 0.

Figure 1.10 Proposed five-part sequence of events leading to

DSDT.
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The purpose of the research study here is then to model the key elements

of the five part scenario. A one-dimensional hydrodynamic Lagrangian finite 0

difference technique is used to numerically solve the conservation equations

of mass, momentum, and energy. A pore collapse theory derived by Carroll and

Holt [20] which demarcates three regimes of deformation, elastic, elastic- 0

plastic, and plastic is utilized to determine the rate of compaction and the

development of the solid plug. Basically, this portion of the code is an

extension on previous work done by Coyne [21]. Furthermore, the Hayes hot S

spot theory is incorporated in the code to define the sensitivity to

reaction. By introducing reactive chemistry to the code, a strong effort is

made to model the detonation and retonation waves which are initiated by a S

shock wave generated from ramp wave inputs with rise times on the order of

tens of microseconds. It was shown in Reference [19] that rise times of this

order are typical for burning, granulated beds whic" have lengths less than

their critical detonation run-up length. Although, Setchell [12] also studied

ramp waves, the rise times were faster by an order of magnitude.

o* ,o"

p- 0 .

.0

>0..

................................ ... . . . . . . . .. .
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CHAPTER 2

* •

MATHEMATICAL AND NUMERICAL ANALYSIS

The equations which mathematically model shock initiation to detonation

* due to a rapid compression of high explosive containing voids are presented in 0

the sections to follow. Specifically, the material being considered here is

HMX, requiring specific constitutive relations. Properties for HMX are listed

in Appendix A. The model clearly can be applied to other reactive solids, but S

an equation of state, a caloric relation, and the material Hugoniot must be

known.

* 2.1 Free Boundary

The first step taken to model DSDT in a porous explosive solid was to

determine the pressure gradients produced by the adjacent reacting granulated _

bed, Zone 2 in Figure 1.9. An analysis by Butler and Krier described in

Reference [4], models the accelerating convective burn and rapid pressurizaton

* for granulated beds of explosives.

Figure 2.1 presents the predicted pressure rise rate at one location in

- such a bed. The bed length is always less than the required run-up distance

to detonation, zCJ" Notice that the pressurization rate is strongly dependent

on particle size, increasing, as one would expect, with smaller propellant

fragments. Subsequently, the rate at which the impermeable bed is being

stressed (assuming that such a bed is adjacent to the porous, permeable bed) 9

is defined by the pressure-time functions predicted by the Deflagration to

Detonation Transition case documented in Reference [19].

. ... . ... .. ... .-... ... .... .... .. .-... ... ,.-'.---l-m. . .*, . ..,-*- * .. . .- , ,.'*... .
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The pressure-time function here is approximated by a linear p-t relation,

with the slope a specific function of the material properties. Therefore to

simplify the loading boundary condition at the granulated/cast bed explosive

interface, the pressure magnitude of the left free boundary was assumed to .

satisfy

P(t) = (P* - Po)(t/t*) + PO t < t* (2.1a) 7

P(t) = P* t > t* (2.1b) B

Here P* is the maximum pressure applied to the left boundary, while t* is the

characteristic rise-time for the "ramp" wave to reach the maximum stress at -

the free boundary. It should be noted that a typical range of t* includes the

interval 1 < t* < 50 microseconds. Thus this type of "ramp-loading" is much

slower than the "ramp" wave compressions of explosives studied by Setchell ..

[121, where 0.3 < t* < 0.8 microseconds. A shock loading to P* is usually

assumed to be t* < 0.01 microseconds.

2.2 Governing Equations

For our hydrodynamic analysis the Lagrangian or material form of the

governing equations was chosen, instead of Eulerian form. The Lagrangian B

coordinates are fixed to the material and follow this material as it moves

with time, whereas the Eulerian coordinates are a fixed frame of reference, '..-

where mass, momentum, and energy may enter or exit through the control B

surfaces. Therefore, with the Eulerian formulation, the boundary location

must be implicitly determined after each time increment. However, with the -

Lagrangian description, the location of the free boundary condition is B

21,% ..
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explicitly known, since the Lagrangian boundary coordinates move with the

[ material boundary.

The inviscid Lagrangian one-dimensional unsteady form of the conservation

of mass, momentum, and energy equations are expressed for total mechanical

mixture, respectively as

= v -au (2.2)

au _ v P (2.3)
at ah

and ae 1t- + Q (2.4)

In equation (2.2 - 2.4), v represents the specific volume; u, particle

velocity; e, the specific internal energy; P, the total stress; and Q, the

- .heat added by chemical reaction per unit mass per unit time. The symbols

•and - T indicate the partial derivatives with respect to the Lagrangian

t spatial coordinate and time, respectively. For comparison purposes, the

Eulerian form of the conservation of mass, momentum, and energy equation,

respectively, would be,

Lv - a- +a vu (2.5)

au - au aP (2.6)
a Ta ax(26

ae - e av av (2.7)
u -- Pu - -P L+ Q(2.)

atax ax at

- . .. . . . .. . .:.-l.fi. '-.. ,:-Q :.:.
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where the symbol denotes the partial derivative with respect to the

Eulerian spatial coordinate. Notice that equations (2.5 - 2.7), in absence of

the convective flux terms, are identical to equations (2.2 - 2.4). Since the

same mass is contained in a given Lagrangian control volume throughout the

variation of time the convective flux terms do not appear in equations (2.2 -

2.4).

Generally, the Lagrangian form of the governing equations are easier to

incorporate into a numerical solution technique, since it is clear that they

are in a simpler form than the Eulerian, and, most importantly, one has the

advantage when dealing with a free or moving boundary condition. To provide

mathematical closure to the governing equations, for an inert material, an

equation of state is needed, since the three equations (2.2) to (2.4) involve

four unknowns.

2.3 Constitutive Relations

From the Second Law of Thermodynamics, there exists a unique relationship

[] between the material equation of state, Ps(vs, Ts), and the caloric equation

of state, es(v s, Ts). One way of relating the two state equations is through

Helmholtz free energy function and its thermodynamic derivatives. Therefore

Ps(vs, TS) and es(vs, Ts) must satisfy the reciprocity relations.

p : - (2.8)-'"s avs

es -T s aT (2.9)

s0

-.. . . . .- °.. -. -
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In equations (2.8) and (2.9), T represents temperature, P, pressure, e,

specific internal energy, v, specific volume, and i Helmholtz free energy.

The subscript s denotes a solid material, while the symbols

-1 indicate partial derivatives with respect to specific volume and
an aTpatawihtan

* temperature, respectively. Appendix B gives a review of these fundamental

thermodynamic concepts.

With the assumption that the Gruneisen coefficient, r, is constant, the

Helmholtz free energy function is expressed in the following form (Baer and

Nunziato [22]).

v
(Vs,T s) = J(vs) + rCv tn( V )(T - T S)

T
+ Cvs[Tstn(T) + Ts - Tsol (2.10)

B0

where cvs represents the specific heat at constant volume of the solid phase

which is also assumed to be a constant. The term J(vs) in equation (2.10) is

a nonlinear volume-dependent function determined from shock Hugoniot

experiments [22].

The Gruneisen coefficient is defined by the thermodynamic derivative O

r (v) - v ( (2.11)

which characterizes the ratio of thermal pressure to the thermal energy of the

.. lattice. At standard volume, the Gruneisen coefficient, r. = r(vo), of a

material can be related to other properties, such as the isothermal

• "compressibility of the material at standard conditions, Ko
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Io v (2.1?)

0

and the coefficient of thermal expansion at constant pressure, <"-
P0

S(av) (2.13)

Thus an expression can be obtained for the Gruneisen coefficient at

standard volume, i.e.,

ro =O< p P (2.14) 0
CvK 0  PoC v  c

where co is the ambient sound speed of the material.

Although equations (2.2-2.4, 2.8 and 2.9) form a basis for the .0

mathematical description of a homogeneous material, an additional relation is

needed to describe a heterogeneous material. Porosity is defined as the ratio

of total volume of the material to the volume occupied by the solid phase, or

Vo

VT_ VT (2.15)

5

Initially, the volume not occupied by the solid material is assumed to be

massless. With the introduction of porosity an additional equation is needed

to complete the mathematical description. S

Extensive research in the area of mathematically modeling the collapse of

a porous material under an applied external load has been performed by Carroll

and Holt [201. In their model the porous matrix is exemplified as a hollow -

. .- . -. .-.
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sphere where the inner and outer radii are chosen such that the overall

porosity of the material is accurately portrayed. As previously mentioned in 0

Chapter 1, the model of Carroll and Holt [201 assumed pore collapse to occur

in three distinct regimes: (1) elastic phase, where elastic deformation in

the solid takes precedence, (2) elastic-plastic phase, where plastic 0

deformation initially starts at the inner radius and subsequently progresses

outward until plastic deformation begins to occur at the outer radius, and

(3) plastic phase, where plastic deformation occurs throughout the sphere. S

The so called "P - a relations" for the three particular phases of compaction

and the appropriate range over which each applies are given by,

elastic phase ao > a > al

* 4 G (a ~ 0 a ) ( 2 1 a- ---
= 3 a(-) (2.16a) -1)

elastic-plastic phase 1  >a
> a 2

p 2 - ) + in[-(a ) (2.16b)

plastic phase a2 > > 1 >

-2 Y in " - I (2.16c) . -i

where the limits between the three phases are expressed as

2G ao + Y

- 2G + Y (2.17)

- " ,.

.. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . ... . . . . .
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2G 0
a2  2G+Y (2.18) 

Kooker and Anderson [9 have also used the static pore collapse model with the -

yield stress, Y, and shear modulus, G, expressed as functions of a, namely, 0

Y = Y/(2. - 1)2 (2.19)0

G = Go exp [-5(a - 1)/a] (2.20)

Here, Yo and Go are the initial yield stress and shear modulus, S

respectively. Figure 2.2, taken from Reference [21], illustrates the three

regimes of deformation for various initial porosities. Notice that the

plastic phase approaches unity, complete compaction. During deformative o ...

compression the pressure of the mechanical mixture -s equated to the pressure

of the solid

P = P5  (2.21)

Thus, with the additional parameter a and the "P - a law", a mathematical S

description for a nonreactive porous material is complete.

The governing equations for the conservation of mass, momentum, and

energy represented in Section 2.2 are written in terms of the thermodynamic 0

properties (P,v,T,e) of the mechanical mixture as well as the dynamic variable

u. However, during reaction additional relations are needed to separate the

individual phase properties of the solid and product gases from those of the

S °
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Pressure - Porosity Relation
PP - .Low)

E
. 5

R
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G Plastic
P Elastic - PlIastic
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SS

Figure 2.2 Pressure-void volume relationship for porous HMX.
Figure taken from Reference [21].
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mixture. Hence, it is conjectured that any arbitrary volume, VT, within the

continuum can contain both the solid and gas phases. Therefore the individual 0

phase volumes sum to the total volume, i.e.

VT Vg + VS  (2.22) 0

Analogously, the total energy of the mechanical mixture, ET, is the sum of the

total energy of both the solid and gas phase, represented as

ET = Eg + Es  (2.23)

With the introduction of a product gas phase in the mechanical system,

another constitutive equation must be prescribed. A nonideal covolume

equation of state was chosen, similar to the one utilized by Butler and Krier

[19], for the product gas phase, namely

P RT (I + 8/V )/v (2.24) .g g g g

where R is the gas constant, and 8 is a covolume correction term. The value

of a is determined from values for pressure, temperature, and density at the S

Chapman-Jouguet (C) state predicted by a thermochemical code, TIGER [231.

V =  c C J i (2.25)
=vl R Tj - L-.J

Cd

A listing of the CJ values for several loading densities of HMX is given in

Table [2.1]. In accordance with the reciprocity relations defined earlier 0

.. . . . . . . . . . . . . . . . . . . . .
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TABLE 2.1

CJ PARAMETERS PREDICTED BY TIGER [23]

ct TO PCJ TCj VCJ D

(g/cc) (GPa) (K) (cc/g) (mm/p.s) (cc/g)

1 1.9 35.99 3714 0.4073 9.154 5.152

1.056 1.8 31.70 3833 0.4266 8.711 4.815

1.118 1.7 27.97 3931 0.4478 8.301 4.522

1.188 1.6 24.72 4009 0.4713 7.925 4.300

1.267 1.5 21.86 4067 0.4977 7.581 4.139

1.357 1.4 19.30 4106 0.5278 7.267 4.034

1.462 1.3 17.00 4126 0.5627 6.979 3.982
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(Equations 2.8-2.9), the caloric equation of state for the product gas phase

is expressed as

eg cvg (Tg - Tgo) (2.26)

m0

where cvg is an assumed constant which represents the specific heat at

constant volume of the gas phase. Furthermore, while chemical reaction is

present the additional assumptions,

P = Ps = Pg (2.27)

T = Ts = T (2.28)

are imposed.

n 2.4 The Localize( Hot Spot Temperature

Before specifically discussing the hot spot temperature, it is first

important to compare the relative amount of energy associated with shocking a

porous material compared to that associated with shocking a homogeneous p

material. The text by Zeldovich and Raizer [24] provides detailed

background. Figure 2.3 taken from Reference [21] delineates the Hugoniot for

*. both a porous and homogeneous matrix of HMX compressed to a volume ratio of S

V/Vso 0.9. In Figure 2.3 the horizontally shaded area ABC and the

* crosshatched area A'B'C show the increase in energy of a shocked porous and

homogeneous material, respectively. The significant increase in energy S

associated with shocking a porous material compared to a homogeneous material

is conjectured to be the cause for a porous material to be more sensitive to

shock initiation of the detonative reaction than a homogeneous material. S

~~.°-. .--. . . . . -. . ... .. ..o,.o o .. . . . . .-. '-" C".. '. .. *....
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Shock Hugoniots of Solid
and Porous HMX

P Shock Hugoniots

R ao 1.4
Ea B 0 1.0
S3.

R 
B

E

A -A

.6 .5 1025 1.45
.95 :1.15 :1.~35 .

V/VSS

* Figure 2.3 Shock Hugoniots for solid and porous HMX compressed to
a volume ratio of v/ 0.9, taken from Reference [21].

soS
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Referring back to Figure 1.5, a "Pop-plot" for various propellants, one can

see verification of this. Note the significant decrease in run-up distance to

• detonation for a porous material compared to a nearly homogeneous material,

shocked to the same peak pressure. In additon, triangle ABA', shown in Figure

2.3, is representative of the amount of irreversible energy deposited by 0

shocking a porous material.

As mentioned previously in Chapter 1, the theory developed by Hayes [17]

suggests that the total energy deposited by the shock can be equated by the 0

reversible work done in compressing the bulk material plus the irreversible

heating of the localized hot spots. The Equations (1.1 and 1.2) underlying

the theory, are rewritten as 0

P+Po0

(VTo" VT) WH es(vsTH) + (1-W )e(VST (2.29)

VTH° 5 T1)(2.29)

and WH (2.30)

J where TH represents the hot spot temperature. For a porous material, the

total energy of the mechanical mixture is assumed to equal the total energy of

the solid. Therefore, the isentrope energy, e(P), can be expressed as
p 

0

el(P) es (vs,Ti) (2.31)

where T, is the temperature defined by isentropic compression. A relation for

the isentropic temperature is obtained from Reference [24] and is written as

h V s o0  r o -.-.:

T I  T SO--) 0 (2.32)

.-.. ' . . " . . . " .. '. . .... . . . . ..
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With this formulation one can calculate the hot spot temperature. A model is 0

now needed to incorporate this hot spot temperature into the kinetics which

represent how rapidly the solid explosive will gasify (explode).

2.5 The Combustion Model

Following the simplification used by Mader [25], a first order Arrhenius

burn model was chosen to describe the chemical reaction (decomposition) rate S

of the solid material, expressed as

dW

d = z W exp (-E*/RT*) (2.33) 0

In Equation (2.33) W denotes the mass fraction of unreacted explosive, z,

frequency factor, E*, activation energy, R , universal gas constant, and T* -

. the characteristic burn temperature. The symbol - indicates a totaldt

derivative with respect to time.

At first the characteristic burn temperature was represented by the S

localized hot spot temperature, but Equation (2.33), utilizing values of z and

E*/ R (referred to as activation temperature) obtained from Nunziato [26],

resulted in too slow of a reaction rate. Hayes [17] also came to this 0

conclusion, based on experiments with a similar propellant, HNS. Since no

* decomposition times for hot spots are available for HMX, we therefore fit our

model directly to Hayes data. By extracting several points from the curve in

Figure 1.6, decomposition time was found to be a parabolic function of hot

spot temperature, i.e.,
LS

S.-...*.. . . . . . . . . .

,., . . . . . . . . . . . . . . .

i "'.-'.' I'I ''I ,-'" -'-''I '-S 
' '' '' .° ' '

1 ' 1- .1 . * . .1 1
.
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1000 2 I00log T = -0.6744703 [-T-] + 2.2482343 [-0--] 1.9132332 (2.34)

H H

where T represents the decomposition time in microseconds. The data used by

Hayes showed that a detonation occurred for a corresponding temperature of 619

K but did not for a corresponding lower temperature of 561 K, therefore 600 K

was the temperature selected for the lower limit in applying expression (2.34)

in the decomposition model.

To incorporate the decomposition time determined by Equation (2.34) into

the combustion model, Equation (2.33) was integrated to define a new

activation temperature corresponding to the predicted hot spot decomposition

time. Therefore, by integrating Equation (2.33), the following expression is

obtained

E* in W BH TH9R n -[ (2.35)
R

where WB is the mass fraction remaining after chemical decomposition of the

hot spot has occurred. Bearing in mind that this model is based on HNS rather

than HMX, the activation temperature predicted from Equation (2.35) is bounded

by the value given by Nunziato [26]. Subsequently, after the hot spot has

decomposed, the characteristic burn temperature is defined by one of the

following two values; (1) the bulk temperature or (2) the average of the

bulk and hot spot temperature. These are then two distinct cases which are

referred to as model CB1 and CB2, and are expressed below (along with the

limits in which they apply) as
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Model CBI WB > W > 0

* S

T* T (2.36)

Model CB2 WB >W >0

T*= (TH + T)/2 .0 if TH > T (2.37a)

T*= T if TH < T (2.37b)

H

Both models were used in the numerical solution technique. Based on the p

interpretation of the predicted results, model CB2 was eventually assumed

better. A comparison of such results are presented in the next chapter along

with the explanation of why model CB2 was chosen over CBI.

2.6 Review of the Key Assumptions

Before proceeding onto the description of the numerical solution -

technique a list of the key assumptions made in each portion of the solution

technique is presented below.

Homogeneous Material

Solid Phase S

1) the Gruneisen coefficient, - - v (-) , is constant.
aev

2) the specific heat at constant volume, cvs, is constant.

.•. .o

I oO.-
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Gas Phase

1) the specific heat at constant volume, Cvg9 is constant.

Porous Material

1) the Gruneisen coefficient, r - v (-!)v is constant.aev
2) the specific heat at constant volume, cvs, is constant.

3) the voids initially in the material are regarded as being massless.

Reactive Material

1) the Gruneisen coefficient, r - v (2v is constant.ae

2) the specific heat at constant volume, cvs, is constant.

3) the specific heat at constant volume, cvg, is constant.

4) reaction does not initiate until the voids initially within the matrix of

the material have completely collapsed.

5) the temperature of the gas phase equals the temperature of the solid phase

which equals the temperature of the mechanical mixture

6) the pressure of the gas phase equals the pressure of the solid phase which

equals the pressure of the mechanical mixture

=- - 'Conseq-3ntly, the subscripts of the parameters just equated will be dropped in

the section which follow.

Table [2.21 presents a method of procedure for solving the flow equations

which summarizes the logic, the manner in which these assumptions constrain

the results, and the iteration pathways to assure convergence of all dependent

variables.

- . .. -. . .

• . -.- '2 : - '. - - - -

". . . . . .. . . . . . . . . . . . . . . . . .
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TABLE 2.2

PROCEDURE FOR SOLVING THE FLOW EOUATIONS

1) Solve for the conservation of mass, Equation (2.2).

2) Solve for the conservation of momentum, Equation (2.3). -

3) Solve for W, the mass fraction.

() If the pores initially contained in the matrix of the material have

not collapsed, W=1 (no reaction).

(ii) If the initial pores have collapsed and the hot spot temperature,

calculated from Equation (2.29), is less than 600 K, use Equation 0

(2.33) to obtain a value for W.

(iii) If the initial pores have collapsed and the hot spot temperature is

greater than 600 K, use Equations (2.33), (2.34), and (2.35) to 0

determine a value for W.

4) Solve for the conservation of energy, Equation (2.4).

. (i) Homogeneous Material

(1) Solid Phase - Solve for the remaining thermodynamic parameters,

(P,T), knowing that the total internal energy of the mechanical 0

mixture is equal to the total internal energy of the solid, -

while utilizing the assumption that r and cvs are constants.

(2) Gas Phase - Solve for the remaining thermodynamic parameters, S

(P,T), knowing the total internal energy of the mechanical

mixture equals the total internal energy of the gas, while

making use of the assumption that cvg is a constant. S

.............................................. "
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(ii) Porous Material - Solve for the remaining thermodynamic parameters,

(PvsT). Utilizing the assumption that the initial voids are 0

massless implies that the total internal energy of the mechanical

mixture is equal to the total internal energy of the solid.

Furthermore, an iterative technique must be used to equate the S

pressure predicted by the "P-a" law to the pressure of the solid by

varying the specific volume of solid.

(iii) Reactive Material - Solve for the remaining thermodynamic parameters, S

(PvgVsT), by employing the assumption that the temperature of the

gas and solid are equal to each other. In addition, the pressure of

the gas and solid can be equated by utilizing an iterative method 0

whereby the specific volume of the solid is varied.

5) Determine the hot spot temperature by employing Equations (2.29)-(2.32).

However, the hot spot temperature is only calculated after complete pore . -,

collapse and before reaction begins.,S

.'..

. --- I4.-•
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o , .

2.7 Numerical Solution Technique

The equations presented in the previous sections of Chapter 2 completely .

define the hydrodynamics and thermodynamic state of a continuous, porous

medium. A finite difference technique patterned after the WONDY code [27] was

utilized to solve the system of equations. At the initial time, t = 0, the

bed of porous propellant/explosive is discretized into J cells labeled from

left to right as j = 1,2,3,...,J. The thermodynamic properties, pressure,

temperature, internal energy, and specific volume, are assumed to be constant

over the width of each cell. At the boundaries of the cells, the parameters,

particle velocity, and spatial locations are defined. Figure 2.4 illustrates

the location of the points of evaluation of the variables in time and spatial

frames, where the steps in time are represented chronologically as n-i, n,

n+1. Furthermore, Table [2.3] presents the sequence in which the fluid motion -

equations are solved, which are written in their finite difference

approximation form. Steps (1-8), in Table [2.31, are performed to model

stress wave propagation in a non reactive porous material while steps (1-4)

and (5+-9+) outline the procedure in modeling the reaction of the propellant.

All variables are initially specified for each cell, located throughout

the bed. Following, the second time step is obtained by first determining the

velocity of the free boundary from the conservation of momentum equation,

written as

un u + bc - P )/M (2.38)

L1/2 1/2

Ik  S

"-. .- "4
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Cell Boundary, x
Thermodynamic Variables, (P, v, e)

Cell n+10
Boundary
Velocity, u n+/

At new j +1/2

/(A vD, e )n
~I~v, Ij+1/2

E
H n

At old

n-I. Logranqion
i-1 [4-/2 j j+1/2 j+1. Coordinates

k Cel I -
x

Eulerion Coordinates

Figure 2.4 Representation of finite-difference cells indicating how
the variables are defined with respect to the Lagrangian
indices and Eulerian coordinate system. Figure taken
from Reference [21].
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Table 2.3

iD Lagrangian Finite-Difference Equations

n +I/ n 1/ 1- t -'12 ,tnn n
- ~ ~ ~ ~ 1 1) i 27~ l+1/( +12J -~(~ 1 -(P+q)j

(M. + M. 1)

where t~n + 1/2 = t - t n

M M.(h n hn )v = constant+ 3 1/2

2) h~ n + I h n ~1/ + n + 1/2 u n+I

3) 1= (h~ + / h~ i ~/Mj

n+1 )2(n +1/ n +1/ 2/v~S14) (i)q j(1) =2.0 (ARVI) ju +.,2- Uj i,- /v 2

n+1i un+ 1/ n + 1/
where qjfl 0 if +. jI2 U 72

IF
(ii) q*(n)- ARV2 (h n i1~ h~ ni + Cn (vi' vn+1 )/,n +1/2

*n+1 n+1 n+

Sq9
1  nj,+1 n+(2

n+1 n+15) P. f(ci determined by Equations (2.16-2.20) in Section (2.3)

where n+1 n+1 )+
whee a vj (vs~~
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6) T + I determined from en +  = (e )n+ 1

SS

n4.1 n +1 n AV
where e.+ 1  eq + [(Pj+ qj) ++ (P.+ qj)] + AQ

VV

n+1 n+1 Vr C T z-s(e S C vs(T +l- T0) +  (s'j ] r nvsT1n [( +
(v)

ls

A 2 n n _ vn+1Av' 2v v +1(vj -

-v (vn + vn+1) 2

3 3 VS

AQ 0 no reaction

7) pn+l= p )n+1 rc (Tn+l T , n+1 + J((v)n+1 )11/(v)n+1 + P
s vs To)( Vsj +av s  s s

^n+1 *1/2"
8) C 4  IC}cs

IS

* (V )n+1 { Ia [ n+1
s V av s  s partial derivative evaluated

at constant temperature

n n I At + + Atn z exp T if 1 > W...> W
* 5)4. (i) W'+ W. 1/2 Wi(~t B~ i!3 3 (TH~

*H

where-T Equation (2.35) > - E
R

(T ) j  is determined from Equation (2.29)
HJ

r4l = Wn_1(2 n n4+1/2 + At -1/ z exp E * B n+1

W At--- I ifWB 0
RTi

• Tn
where CB1 T. T.

see explanation on page 45 S
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CR 2 j I/2 (TH)j+ T'] if T' < (T
* J

n n
T = T  if T > (T).

* 6)+  T n+I determined from e n+l= W.n+l (e )n+l+ (-wn+l )(e ).+l

where Ce )+1 = cvg (Tn 1- T

Q = (Wn - W n+1 1J J HDET

7)+ pn+[ R Tn+[l + /(v n+ /(vn+l

wn+1 : n+l w n+1 n1where CVg). = v - W. CVs) j

i ~(l-wj ,

8)+ ~pn+l (Ps)nl+l 11121

i i s
n+ n+10

n+1v

Cn+: ( )n+l n n+l, 1/2
9)+ J [+ 9}

n+1l 1
aj s j Cg 9

*n+1 n4-1 (v +1where C 3 R Tn  + 6 R T. / ( ,.

The localized hot spot temperature is determined after complete

compaction and the values used for specific volume correspond to the

pressure strength of the shock that initiated compaction.

.-- .~i~i21 S
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with q, the artificial viscosity which will be described later, being set

5 equal to zero. In Equation (2.38), Pbc is the pressure at the free boundary

condition described by Equations (2.1a and b). Notice, as shown in Table

[2.3], the conservation of mass is expressed in two steps (2 and 3), thus

enabling a solution for the location of the Lagrangian spatial coordinates,

for each step in time, explicitly. Steps (5-7) and (6+-8+ ) have to be solved

implicitly, therefore an iterative technique must be utilized for their

solution, while the remaining steps are all solved explicitly.

To insure stability of the solution over time, an expression for the time

step was taken from Reference [27] and is written here as

Kt hn+1
n+3/2= Kti Ahn+j =2(n.39a)2

VARB + {(VARB) + (C. ) /2(12

+

and VARB = Cn+1 + 2 B2 1 a h n+1 (2.39b)

where K, 3I and B2 are constants while

n (v n +I)

*~ (i.Y) v -v (2.39c)
v at (vn + vn+l)Atn + i2

Furthermore, the time step is never assigned a value greater than five

nanoseconds, which is to insure stable solution during decomposition.

Also to insure stability of solution, q, the artificial viscosity term was

introduced to conservation of momentum and energy equations of the mechanical

mixture. S

Artificial viscosity is employed in the numerical finite-difference
dP

.- technique to prevent an infinite slope of the pressure wave, d , which would

asymptotically occur when a shock wave is formed. Essentially, by utilizing S

*. .* . .*. * . .

p..
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artificial viscosity, the shock wave is spread over a finite number of

Lagrangian cells. A time-intensive effort was required before a proper 0

expression for artificial viscosity was "ound which gave reproducible

results. The expression for artificial viscosity, presented in Table [2.3] as

step (4), is a combination of a quadratic equation, taken from Reference [28] 

(which essentially spreads the shock wave) and a linear equation, taken from

WONDY [27] and subsequently modified (which dampens the oscillation that might

occur throughout the bed). a

Sound speed is introduced only to provide mathematical closure for the

artificial viscosity expression and Equation (2.39). Steps (8 and 9+ ) in

Table [2.3] represent the expressions which are assumed to sufficiently a

describe the sound speed in a porous and two phase material, respectively.

The numerical solution technique described above was incorporated into a

code given in Appendix C.

•I

S2 1

i L .•i.. .. 1
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CHAPTER 3 0

NUMERICAL RESULTS

This chapter will present several cases which capture a five-part

scenerio of Deflagration to Shock to Detonation, as illustrated in

Figure 1.10. All the cases that will be presented numerically model a

ten centimeter long bed of HMX, either initially homogeneous or

initially porous. The bed was discretized into two hundred Lagrangian

finite-difference cells, thus corresponding to an initial grid spacing

of five tenths of a millimeter, (Ax=0.05 cm). Earlier studies, by S

Coyne, Butler and Krier [101, employed the same initial grid spacing for

modeling stress wave formation and propagation in an explosive medium.

In addition, the values of the coefficients for artificial viscosity are

ARV1=2.0 and ARV2=0.1, which are used for all cases shown in the

sections to follow (unless explicitly stated otherwise). Also, as

stated in Chapter 2, the CB2 combustion model is utilized unless

explicitly stated otherwise. All propellant properties are listed in

Appendix A.

The following sections will discuss and present computed results e

for shock initiation to detonation for both homogenous and porous

materials. Validation of the model, based on several typical cases of

"ramp" wave initiation to detonation in a porous material, is also S

included. In addition, a comparison of the two combustion models (CB1

and CB2), is presented, including calculations for different parameters.

. . - , , , • .' ". -." .- . . - . . • . ". -
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3.1 Shock Initiation of Detonation

The first calulations considered a purely homogeneous bed of HMX. Since S

the bed is purely homogeneous (no voids exist), the characteristic burn

temperature is represented simply as the temperature of the bed. Also

different from the general void containing cases, analysis for a homogeneous S

material requires an artificial viscosity formulation documented in Reference

[271. A shock strength of 10 GPa, i.e., P*=I0 GPa and t*=0.02 Usec, was used

to initiate the stress waves that produce detonative reactions in the bed. A S

different criteria was needed to initiate reaction here, since the temperature

produced by shocking the homogeneous medium was not sufficient in initiating

reaction utilizing the explosion model. If a temperature greater than 450 K S

is reached, a value of 0.85 is assigned for the mass fraction, thus

artificially inducing reaction. Subsequently, a detonation was produced in

the bed, as clearly shown in Figure 3.1, which exhibits the pressure profile

of the detonation wave as it propagates through the bed. Listed in Table - -

[3.1], are the CJ parameters predicted by the computer code (presented in

Appendix C) along with the CJ parameters predicted by TIGER [23]. Although S

the CJ parameters predicted by code do not agree exactly with those predicted -

by TIGER, the results are acceptable.

Problems arose, however, when trying to produce a shock wave in a porous S

material. Figure 3.2, taken from Reference [21], shows the velocity magnitude

of the free boundary as a function of time for a homogeneous case (o = 1), . '

and two porous cases (ao =1.2, and ao =1.4), produced by a "ramp" wave with S

P*= 3 GPa and t* = 40 usec. One can clearly see a "jump" in the velocity

* magnitude for both porous cases contrasting with the homogeneous case which

shows a smooth transition to a steady value. Coyne, Butler and Krier [10] ..

S---
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TABLE 3.1

PREDICTED CJ PARAMETERS FOR HOMOGENEOUS HMX

PJ TCj VCj D

(GPa) (K) (cc/g) (mm/11)

TIGER [23] 35.99 3714 0.4073 9.1540

Our Code 38.90 3953 0.4041 9.39
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Particle Velocity of Left Boundary

U [ Xo(t),t]

E Pressure Boundary Condition 1

L 0[P=(0.075 GPo/s) I<3 GPo.

C
I .8
T S
Y 12

M 6

M

M I f-ao= i.0

C4R 3 ro GPo (at 40k.Ls)
0 PO
S
EC .2 R0.003 mm//is

(at 3 GPo)I -1
0. 40. 80. 0

20. 60. 100

TIME (MICROSEC.)

Figure 3.2 Velocity of the left boundary as a function of time
from the finite difference initial porosities compared 0
with the velocity of a one-dimensional regressive burn,

= 0.001 mm/visec P (GPa). Figure taken from Ref. [21].
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attributed the jumps in velocity magnitude to be caused by the pore collapse

model and not by numerical inaccuracies. Therefore to introduce a shock wave

into a porous explosive, a specific "ramp" wave is required, while considering

the propellant bed to be inert until the compression wave has achieved the

desired strength. A condition, P* : GPa and t* = 10 Usec, was used to 0

create the shock wave in a porous explosive case, ao = 1.5322. Figure 3.3

illustrates the pressure profiles leading to a steady detonation. The

predicted steady CJ values for pressure, specific volume and temperature are S

19.49 GPa, 0.5544 cc/g and 4597 K with a corresponding detonation velocity of

7.082 mm/psec, values which are proper for HMX with a density of po = 1.24

g/cc, reduced from the crystalline density of po : 1.90 g/cc when ao . .

3.2 Validation of the Model

As mentioned in Chapter 1, accumulating accurate experimental data for .9

shock initiating a porous explosive is difficult. However, J. J. Dick [1I] K

was successful in obtaining "Pop plot" data through extensive runs and

statistical analysis for samples of porous HMX, namely, (o0 1.5322. Several

calculations were made here assuming a porosity identical to the one used in

Reference [i1 by J. J. Dick, varying the shock strength in order to produce a

theoretical "Pop plot". For comparison, Dick's results are displayed in S

Figure 3.4 as solid lines, along with the computed results (shown by the

dashed line). It is clear from Figure 3.4, that although the calculated "

run-up to detonation distances do not fall in the uncertain range of Dick's S

experimental results, the model does predict an almost identical slope. The .

.* quantitative disagreement could stem from utilizing calculated decomposition ..-

b times for the hot spots based on experimental data obtained for a similar yet S

* .. . . . . . . . . ... . .. .* .. * .* . . . ..~* . . .

.............



54

0

EE

cc
.0 inO

a__0(/1

-. -

w0 0 O

.0 in n S.te,-

0; in 0; If; 0o in 0n 0 to C; W; <; C0
*~ ~ N u C ~ . ) C CQ . .(OdO) ejflssgJd (OdO) ojflssGJd 0 W 0

-0>< C~J

*s LLO)

V) 4- -

00

S.- .0

oo
in n L I

0) 00

*' - S- U

inCD 0 in. c"
CL L

o0- 0

0

00 00 S

:L C!- . ) Cu C 4 .

(odO) ;jr)sS9Jd (odO) GjflsSd

Sg~d



55

El 5.0

.

E0

U)

r 2.0 J.J. Dick's Experiments
- -- Calculated Results

1.5,
1.0 2.0 3.0

Input Stress (GPo)

Figure 3.4 A comparison of numerically predicted and
experimently observed [11] run-up distance
versus input pressure for a porous bed of
HMX (co=1.5322)
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different propellant, HNS. Futhermore, Hayes' hot spot model was based on

experimental results for porosities ranging from 1.0875 < ao < 1.2518, where

Dick's experiment and the calculations were conducted for a higher porosity,

= 1.5322. Finally, a true shock can never be precisely modeled since the

stress wave must be spread over several grid elements, a discrepancy in the

predicted results. Nevertheless, within the limitations of the model, the

results predicted are exceptionally good.

3.3 Typical Cases

Several cases were chosen with various maximum input stresses,

characteristic rise times and porosities to test the model trends. The first

case considered an initial porosity of ao = 1.1176, initiated by a "ramp" wave

having a maximum input pressure of P* = 2 GPa and characteristic rise time of

t* = 10 psec. Figures 3.5-3.9 illustrate the distribution history of several

key parameters, namely P, a, (I-W), TH, and T. For this particular case, six

specific segments in time were chosen for illustration purposes. The first

U time shown in all the five separate figures is 10 psec. By viewing Figure

3.5, one can see that the compression wave has propagated into the bed to a

distance of 1.5 cm. Notice even though the left boundary has reached the

maximum input stress, shown approximately at a location of 2 mm into the bed,

the shock front has not fully developed. Figure 3.6 illustrates the closure

of the voids as a result of the compression wave, or in other words, displays

the formation of the solid plug.

One can see from Figure 3.7, at 10 usec, that the reaction has not

commenced. As time progresses the compression waves coalesce, strengthening 7-

the shock front which in turn deposits larger amounts of (irreversible) energy

- -' .

-*% ,
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into the voids prompting an increase in the hot spot temperature. Figure 3.8

* exhibits this steady increase by the positive slope of the hot spot -

temperature profile. Furthermore, one can see that the hot spot temperature

is much greater then the material temperature of the bed, the latter depicted

U in Figure 3.9.

As time progresses to 11 psec, Figure 3.7 shows reaction has begun. This

occurrence can also be viewed by an increase in porosity (alpha), as displayed

in Figure 3.6 at that instant. Induced by the the initiation of propellant S

decomposition an increase in strength of the compression front occurs, as seen

in Figure 3.5. The effect of the strengthened compression front is a rise in

the hot spot temperatures as illustrated in Figure 3.8. Also because of the S

reaction, there is a predicted increase in the bulk temperature, exhibited in

Figure 3.9 at t = 11 4sec.

* At the third time presented, 1P usec, the degree of reaction has

increased, again shown in Figure 3.7 and in Figure 3.6. With the increase in

the degree of reaction, the chemical energy further contributes to strengthen
S. -

U the compression front, as illustrated in Figure 3.5. In turn, a stronger ..

shock strength prompts a higher hot spot temperature, depicted in Figure 3.8,

and the additional chemical energy also stimulates a rise in the material

temperature, as shown in Figure 3.9. S

At 13 psec, the decomposition of the propellant is complete in a small

* region of the bed near x = 2 cm, as pictured in Figure 3.7. The porosity

distribution, displayed in Figure 3.6 (at 13 Usec), shows compression ahead of S

the decomposition region. The effect of all of this is a right moving

detonation wave and a left or rearward moving retonation wave, as illustrated

in Figure 3.5. One may notice that the retonation wave has a higher peak

. .
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pressure than the detonation wave, since it must travel through a highly

compressed material, whereas the detonation wave must propagate through a

porous material. The substantial rise in the pressure front subsequently

causes an even higher hot spot temperature, due to the overabundant

U irreversible energy being deposited at the void sites, as shown in Figure 3.8. i

At the fifth time shown, t = 14 psec, the region of complete

decomposition is greatly enlarged, as illustrated in both Figure 3.6 and

3.7. The chemical energy being released in turn prompts the propagation of

the detonation wave further into the propellant bed, as seen in Figure 3.5.

However, the retonative reaction has ceased propagating, causing a steady

decrease in the left moving wave. One would have expected that the retonation

wave would have propagated all the way to the left boundary. However, the

Arrhenius kinetics failed to sustain the retonation wave, just as the

Arrhenius kinetics failed to initiate reaction in homogeneous material shocked

to 10 GPa. Hayes [171 came to the conclusion, for a porous material, that

scissing of molecular chemical bonds induced the experimentally observed . -

* decomposition times. It is therefore postulated that a shock of substantial .

strength may also change the molecular structure of a voidless propellant

enhancing reaction. Also at time, t = 14 psec, Figure 3.8 shows that the

detonation wave produces a steady hot spot temperature. The oscillations seen

in the hot spot temperature are a result of numerical integration

*i inaccuracies.

At the final time shown, t = 15 11sec, Figure 3.5 illustrates the steady

" detonation wave continuing to propagate even further into to the bed at a

predicted CJ pressure of 24.99 GPa and a corresponding CJ temperature of

3923 K, shown in Figure 3.9.

• -.- . ...... ..- - ........ . .. "..]-..'-....... .,-'-."'--, ................... .. i
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In addition to the figures just presented, a locus of stress and reaction

L fronts are shown in Figure 3.10. The dashed line depicts stress wave

propagation into the bed, initiating the detonation t = 12.41 psec, at

" . x = 2.05 cm. The solid lines represent the locus of the right and left

traveling detonation fronts. Figure 3.10 also shows the termination point of

the retonation wave. An apparent change in velocity may be seen in the left

traveling wave at the termination point. The slope of the solid lines

correspond to a detonation and retonation velocity of D = 8.757 mm/psec and

R = 9.135 mm/sec.

A second case is now presented for a material with a higher initial

porosity, namely ao = 1.1875, and with an increased strength "ramp" wave

P* 4 GPa and t* = 10 usec. Figures 3.11-3.15 depict the pressure, porosity,

mass fraction reacted, hot spot temperature, and bulk temperature distribution

Ifor fixed time segments. One can see from Figure 3.11 that the detonation

occurs just behind the compression front and in the following time the stress

front is overtaken by the detonation wave.

- Different from the previous case presented, no retonation takes place.

However, a left moving compression can be seen in Figure 3.11. If a chemical

*... change does occur when a homogeneous material is strongly shocked (enhancing

the sensitivity to reaction), as postulated earlier, a retonation would have

been caused. Also illustrated in Figure 3.11 is the steady state detonation

wave having a CJ pressure of 24.39 GPa and a corresponding CJ temperature of

4173 K depicted in Figure 3.15. The physical plane, shown in Figure 3.16,

illustrates a detonation velocity, D = 8.255 mm/usec, but no retonation

*'1 wave. The detonation occurs at a run-up distance of x = 4.83 mm at

t - 4.96 psec.

. * .* * .-
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The third case treats a material with a relatively high initial porosity,

namely ao = 1.4615 but a relatively weak ramp input wave, P* = 2 GPa and

t* 20 usec. Again the five parameters P, a, (1-W), TH, and T are

illustrated in Figures 3.17-3.21, respectively, as time progresses. Similar

to the previous case (coi = 1.1875), no retonation is predicted to occur, but a

left traveling compression can be seen. In this particular case a steady CJ

pressure of 21.01 GPa and CJ temperature of 4616 K are predicted. One can see

a peak in the hot spot temperature in the regime of initial detonation. Since a

a constant hot spot temperature would be expected after a detonation wave is

initiated, the predicted peak in the hot spot temperature (Figure 3.20) is

assumed to be caused by inaccuracies in the numerical steps used to obtain a

hot spot temperature. The physical plane, shown in Figure 3.22, again

presents the location and time of the occurrence of detonation, x = 2.68 cm

and t = 21.55 Wsec. The slope of the solid line represents the detonation

velocity, 0 = 7.24 mm/psec.

3.4 Numerical Accuracy Test

In addition to the cases just shown, a comparison was made of the

pressure profile for two different initial discretized cell dimensions,

depicted in Figure 3.23, for HMX with an initial porosity, ao =1.2667, and the

imposed stress input condition, P* = 5 GPa and t* = 10 psec. One can see that

the location of the compression wave for both initial grid spacings is

approximately the same for the first two steps illustrated. However, the a

difference in the pressure magnitudes for the two initial grid spacing is

sufficient to cause a detonation wave to be predicted later in the larger

initial grid spacing. The corresponding location and time of detonation for

. - . •.
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the initial cell dimensions, Ax = 0.1 cm and Ax = 0.025 cm, is x = 5.189 mm,

t = 10.65 usec, and x = 5.668 mm, and t = 10.59 Usec, respectively. Also 0

notice at t 14 usec, the larger initial grid spacing does not capture the

peak pressure.

* For the majority of cases studied here (and due to a limited amount of

computer funds) a minimum initial cell size was chosen as Ax = 0.05 cm. This

value allowed us to retain essential features of the shock initiation

physics. Furthermore, for the parametric studies carried out here the basic

trends will still be accurate. Nevertheless, quantitative results, such as

the point of detonation initiation may be somewhat in error.

3.5 Comparison of the Combustion Models

Shown in Figure 3.24 is a comparison of the predicted shock run-up to

detonation length for combustion models CRI and CR2, for an input condition of

P*= 2 GPa and t* = 10 psec. The two models agree exactly for the last four

high alpha values studied. However, there is a considerable difference for

* the low porosity case, a° 1.1176. In addition, utilizing combustion model ARP

C91, a detonation was not produced for the low initial porosity of

ao = 1.0566, when P* = 2 GPa and t* = 10 Psec.

Figure 3.25 illustrates the predicted pressure profile for an

ao = 1.1176, employing CB1. Notice that the detonation is predicted to occur

at a much later time, and a substantial distance behind the compression front,

as compared to the same case employing CB2, previously shown in Figure 3.5. 0

" However, the essential features, that is, detonation and retonation velocities

with the same CJ properties are predicted. Figure 3.26 shows the predicted

temperature profile with the resulting CJ conditions, while the physical

°S
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4.0 * CB2

- CB1
--- CB2

C)

ES

3.0

1. .0 -

c4-

0L.0 1

-- -....--.. -S ~

~~~~1.0 .:-:,-

* S

1.0 1.1 1.2 1.3 1.4 1.5
(POROSITY)

Figure 3.24 A comparison of combustion model CB1's and combustion
model CB2's predicted run-up distance versus porosity
utilizing a specific input condition (P*=2 GPa,

"" t*=lO pJsec).
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plane, presented in Figure 3.27, shows the detonation and retonation

i- velocities.

Since CR2 was able to produce detonations in both low porosity cases

studied, and only slight disagreements were found in the predicted CJ

*I properties between the models, combustion model CB2 is the logical choice. 0

Table 3.2 lists the CJ parameters along with the detonation velocities for all

the porosities studied. Comparing Tables [2.1] with Table [3.2], one can see

that, although agreement between the TIGER equilibrium calculations [23] and 0

the predicted results presented in Table [3.2] are not exact, the same

qualitative trends are present. However, problems did occur in predicting the

proper PCJ" The proper PCJ can be predicted, with some effort, by readjusting ,

the artificial viscosity coefficients for each porosity.

Furthermore, from the results presented in Figure 3.24, one can clearly

IU conclude that alpha is not a dominant factor in the effective run-up distance

. to detonation for the interval 1.15 < ao < 1.4615. One would expect a

decrease in run-up distance to detonation as the porosity increases. However,

! for .= 1.4615 an actual increase in run-up distance is predicted, although

the time to detonation, displayed in Figure 3.28, always decreases

* monotonically for increasing porosity. A possible cause for the increase in

run-up distance can be attributed to the amount of initial void volume. B

Figure 3.29 portrays the location of the left boundary as a function of time,

*. utilizing an input condition with P* = 3 GPa and t* = 40 psec. One can

clearly see, an effect of the initial void volume, namely that for the greater B

porosities the left boundary shifts further into the bed. Since the run-up

distance is measured from the initial location of the left boundary to the

location of the first Lagrangian finite difference cell to detonate, the "

0-T-II
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TABLE 3.2

m PREDICTED CJ PARAMETERS

'To PJTCj VCj

(g/cc) (GPa) (K) (cc/g) (mm! lsec)

1.0566 1.8 23.76 3532 0.4571 10.48

1.1176 1.7 24.99 3923 0.4752 8.759

1.1875 1.6 24.03 4151 0.4873 8.480

1.2667 1.5 24.13 4371 0.5006 8.133

1.3571 1.4 21.37 4430 0.5206 7.685

1.4615 1.3 21.16 4629 0.5324 7.177

SAll results produced with a P* 2 GPa and t* =10 psec.

.~~~ A . . . . .
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Figure 3.28 Predicted time to detonation versus porosity
utilizing combustion model CB2 (P*=2.0 GPa,
t*=10 jsec).
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Position of Left Boundary, xO(t)
100.- ____________ _

* Pressure Boundary Condition
o0[P (0.075 GPO/bLs) t]< 3 GPa

L
0
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Figure 3.29 Position of the left boundary as a function
of time from the finite difference calculations
for three different initial porosities, taken
from Reference [21]. (P*=3 GPa, t*=40 vlsec).
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compaction occurring in the compression front ahead of the point of detonation

S _could be sufficiently large resulting in an increased run-up distance

calculated for large porosity conditions. Another probable cause may have

been the over extension of Hayes' hot spot theory [171, since the highest

porosity he studied was an ao 1.252.

3.6 Parametric Studies

To conclude the research, two parametric studies were made. The first

compared the run-up distances for a fixed porosity (a 1.2267) to various

stress input conditions, while the second compared run-up distances for

various input pressures with a fixed characteristic rise time (t* = 10 Usec)

for different porosities. Figure 3.30 presents the first parametric study.

One would expect a greater run-up distance to correspond to a longer

characteristic rise time for a specific input pressure, since the compression

front will reach the critical pressure needed to initiate detonation later for

the longer characteristic rise time. Figure 3.30 demonstrates the occurrence

of a longer run-up distance for a specific input pressure corresponding to a

longer characteristic rise time. The "Pop plot" (Figure 3.4) shows that for

shock initiation of detonation the run-up distance increases with weaker input

L. pressures. Similarly, depicted in Figure 3.30, for "ramp" wave initiation of

detonation the run-up distance increases with decreasing input pressures.

By extrapolating data from Figure 3.30 with input conditions having a -.-

P*= 2 GPa, a long run-up distance to detonation is expected for slow

characteristic rise times, displayed in Figure 3.31. Therefore, for low input

pressures and critically long characteristic rise times, detonation is not

expected to occur in a ten centimeter bed, eliminating the hazard of DSDT.
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80.

a=1.2667
70. -P*=2 G~a
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Figure 3.31 An extrapolation to determine the expected
run-up distance for relatively long
characteristic rise times (cv. =1.2667,
P*=2 GPa).0
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Moreover, Figure 3.32 shows an increase in run-up distance to detonation

to correspondingly weaker input pressures for four specific porosities,

ato 1.1875, ao 1.2667, ao 1.3571, and ao 1.4615. Evidence of numerical

integration errors were encountered for low porosities, ao < 1.15. Therefore

no results are shown. One would expect a higher porosity bed to be more

sensitive to detonation than a lower porosity bed, thus resulting in shorter

run-up distances. Therefore the curves for different alphas should not cross

each other. However, the crossing may be attributed to a course initial grid

spacing. Although there exists some quantitative errors in Figure 3.32, one

may conclude that for porosities, in the interval of 1.15 < ato < 1.5, do not

take a dominant role in the run-up distances. Furthermore, at relatively weak _0

inputs, P* < 2 GPa, the run-up distances asymptote to high values, indicating

that no detonation would be predicted for input pressures lower than 1.5 GPa.

.. - .. - .-. .
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CHAPTER 4

CONCLUDING REMARKS

The previous chapter presented several numerically produced results which

*depicted the five-part scenario of Deflagration to Shock to Detonation

Transition. Although some integration inaccuracies in the predicted resullts

were encountered, the results clearly showed that "Ramp" wave to Detonation

- Transition is a prominent hazard associated with porous explosives. One of

the purposes of this last chapter is to recommend necessary improvements for

further utilization of the code.

4.1 Necessary Improvements

Two areas clearly in need of improvements are: (1) the need for a better

integration scheme to define the shock waves, and (2) a better data base to

* calculate the hot spot temperature and subsequent reaction rates. One of the

first steps that should be taken to accurately define the shock would be to

reduce the amount of artificial viscosity. By doing this, the shock wave will

* he spread over a smaller amount of grid spaces. If additional increased

computer funding becomes available, it is recommended that the initial finite

difference cell sizes be reduced by 1/2tol/4. The result of both reducing the-

artificial viscosity and initial cell size will be better representation of

- the shock structure, which should alleviate most of the numerically

encountered problems. Furthermore, a more careful definition of the shock

- structure will allow a more accurate calculation of the hot spot temperature,

. since one of the errors associated with the determination of a hot spot

temperature stems from the relatively poor numerical representation of the -
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shock structure. Basically, an inaccurately distributed shock wave results in

an error in the evaluation of the irreversible energy, since the compression ..

process is performed over several cells.

Moreover, since the reaction of a porous material initiates and is

controlled in the initial stages of decomposition by the hot spot, a better 0

data base is needed to accurately determine the hot spot temperature and

decomposition rates. Although the Hayes hot spot theory [171, incorporated in

the code, modeled initiation and decomposition exceptionally well for -

materials with high porosities, the theory began to collapse when alpha was -

less than 1.15. Therefore, it is suggested that research should be conducted

on tne formulation of a model for the localized hot spots on a microscale, .

both experimentally and theoretically. Also, directly related to the'hot spot

temperature, experimentally observed decomposition times should be measured

for a wider spectrum of porosities. With a better understanding of the

formation and decomposition of hot spots, an improvement in the quantitative .. ...

results should be possible.

In addition to the two areas just mentioned in need of improvement, a

dynamic pore collapse model outlined in Reference [20] should be implemented

in the code either to validate or contradict the use of the static pore

collapse model now employed. Although Kooker and Anderson C9] found in their -

studies that the static pore collapse theory sufficiently modeled compaction,

the inertial and viscous terms contained in the dynamic pore collapse model

may be of significance in defining the rapid compression arising from a steady

state detonation wave.

I ..G i .- i .0

o" ••° ."° ,o' .0 1
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4.2 Importance of the Work

Although the code did not successfully produce accurate quantitative

results for the lowest porosities studied here, the key elements of the five-

part scenario were modeled predicting a steady state detonation and, in some

* instances, the occurrence of a retonation. The model was validated by a S

comparison with an experimentally produced run-up length versus peak shock

variation, the so-called "Pop plot". This comparative study showed the

analysis to be somewhat conservative, predicting shorter run-up distances for 6

a given peak pressure.

However, the slope, ISDT vs P* was matched. A parametric study, which

varied the input conditions for a specific porosity, showed that longer

characteristic rise-time resulted in a longer detonation run-up distance. A

second parametric study, which compared run-up distances for different

porosity explosives, for various pressure inputs with the same characteristic P-

rise time, illustrated that porosity, in the interval 1.15 < ao < 1.5, was not . -

a dominant factor in the effective run-up distance.

The granulated bed/cast explosive configuration is representative of a

rocket motor which has partially fragmented. Even though the length of the

*i fragmented propellant is not long enough to detonate from an accelerated

convective burn, the intact propellant may shock initiate from the rapid 0

pressure rise rate. It is evident that "ramp" wave initiation of detonation

is truly a serious hazard to contend with, demonstrated by the short run-up

distances corresponding to rapid rise rates for several porous cases.

- However, by the extrapolation of data from the first parametric study, a

. substantially long run-up length, outside the dimensions of the propellant

bed, would result for relatively long rise-time conditions.

.'° * ** *.
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If the distance needed to shock initiate the cast material is greater

than any dimension of the rocket motor, DSDT is obviously impossible. If the 0

solid rocket propellant is unavoidably frangible, then future formulations

should be devised so that, when damaged, the propellant breaks into larger

0 fragments (on the order of 1/2 millimeter). Flame spreading and convective

burning in such effectively large fragments (but smaller surface-to-volume)

would result in a local dP/dt that would produce larger t*.

As a final conclusion, one can clearly state that an alternative a

methodology for transition to detonation other than the direct acceleration of

the convective burn front, is a Ramp Initiated Shock to Detonation Transition

in an impermeable but porous propellant.

.

......
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APPENDIX A

HMX PROPERTIES [9,22,23,26,29]

Explosive: OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE "

Formula: C4H8 N808

Initial Homogeneous Specific Volume v = 0.5263 cc/g

Ambient Homogeneous Sound Velocity cso = 0.2642 cm/Usec .

Initial Yield Stress Yo = 51.7 MPa

Initial Shear Modulus Go = 3.516 GPa

Gruneisen Coefficient r 1.1 0

Activation Temperature i = 14400 K

Frequency Factor z =6.9 x 1010

Product Gas Constant R = 2870740 erygK

Specific Heat (constant volume)

of the solid Cvs =1.5 J/gK

*Specific Heat (constant volume)

of the product gas CvG = C2.4-0.28( 1 1.3)])
VTo g

*Heat of Detonation HT [7.91-4.33(-L - 1.3)2_ 0.934(- - 1.3)U

Heat nrET L'v"'~ - 9.3(
To To

*Detonation Velocity D = 3.64 (7- - 1.3) + 6.98 mm/usec
vTo

Covolume Correction Term 8 is listed in Table [2.3]

.. S

* *' . . . * .. . . . . . . . . . . . . . . . ... *.* ..** ... .*- . . .
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Nonlinear volume-dependent function obtained

from shock Hugoniot experiments [22] J(x) =7.57x
2 + 13.33x3 + 18.04 4

+ 2.828x5 + 24.01x6 +278.3x 7

+ 383.6x
8

where so --- 1V
S

*Data fits of CJ data predicted by TIGER [23].
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APPENDIX B

RECIPROCITY RELATIONS

Since very few mechanical engineers utilize the concept of Helmholtz free

energy, a step by step derivation for pressure and specific internal energy S

from the free energy definition will be presented. Helmholtz free energy is

defined to be

e - Ts (8.1)

where 4) represents Helmholtz free energy, e, specific internal energy, T, S

temperature, and s, specific entropy. By taking the derivative of Equation

(B.1) the following expression is obtainedI p

d, = de -Tds- sdT (B.2)

1J Making use of an important thermodynamic relation I

de Tds - Pdv (B.3)

where P represents pressure and v specific volume, a substitution can be made

in Equation (9.1) yielding

d= - Pdv - sdT (B. 4)

fI

t-- p

- ........ .. .. ........ .. _..... ... ... '.. ' . ,....-....... . -. ._ . ... •. . ..... ,.. ... . . ..
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Evaluating Equation (B.4) at constant temperature an expression for pressure

in terms of free energy is arrived at, i.e.

(B.5)
pP

In a similar manner, an expression for specific internal energy can be derived

by first evaluating Equation (8.4) at constant specific volume, bringing forth

(a)v = S (B.6)

Following a rearrangement of the definition of free energy and then using

* Equation (B.6), specific internal energy can be expressed as

I e T ~ () (8.7)

Although the derivations may seem somewhat trivial, including the fundamentals

I here may assist in the interpretation of the model and the results for any

* given explosive. See Reference [30] for additional information.

4- 1.
F ** * 4... ."...-.. *... . . . . .

S S *
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